Физический уровень

Сетевые технологии: как устроен Интернет 

 

Физический уровень

 

Функции физического уровня

Физический уровень определяет способ физического соединения компьютеров в сети.

Основными функциями средств, относящихся к данному уровню, является:

  • побитовое преобразование цифровых данных в сигналы среды передачи;

  • передача сигналов по физической среде.

Среда передачи

Центральным понятием данного уровня является понятие среды передачи. Среда передачи – это физическая среда, по которой возможно распространение информационных сигналов в виде электрических, световых и т.п. импульсов. В настоящее время выделяют два основных типа физических соединений: соединения с помощью кабеля и беспроводные соединения.

Технические характеристики среды передачи влияют на такие потребительские параметры сетей как максимальное расстояние передачи данных и максимальная скорость передачи данных.

Кабельные системы

Кабель (cable), используемый для построения компьютерных сетей, представляет собой сложную конструкцию, состоящую, в общем случае, из проводников, изолирующих и экранирующих слоев. В современных сетях используются три типа кабеля:

          • коаксиальный кабель (coaxial cable);

          • "витая пара" (twisted pair);

          • оптоволоконный кабель (fiber optic).

 

Каждый тип кабеля отличается от других внутренним устройством и обладает целым набором технических характеристик, влияющих на основные потребительские параметры сетей:

Тип кабеля

Характеристика

Максимальное расстояние передачи Максимальная скорость передачи
Коаксиальный кабель 185 – 500 м 10 Мбит/с
"Витая пара" 30 – 100 м 10 Мбит/с – 1 Гбит/с
Оптоволоконный кабель 2 км 10 Мбит/с – 2 Гбит/с

Коаксиальный кабель

Коаксиальный кабель был первым типом кабеля, использованным для соединения компьютеров в сеть. Кабель данного типа состоит из центрального медного проводника, покрытого пластиковым изолирующим материалом, который, в свою очередь, окружен медной сеткой и/или алюминиевой фольгой. Этот внешний проводник обеспечивает заземление и защиту центрального проводника от внешней электромагнитной интерференции. При прокладке сетей используются два типа кабеля — "Толстый коаксиальный кабель" (Thicknet) и "Тонкий коаксиальный кабель" (Thinnet). Сети на основе коаксиального кабеля обеспечивают передачу со скоростью до 10 Мбит/с. Максимальная длина сегмента лежит в диапазоне от 185 до 500 м в зависимости от типа кабеля.

 

 

 

Устройство коаксиального кабеля

 

Витая пара

Кабель типа "витая пара" (twisted pair), является одним из наиболее распространенных типов кабеля в настоящее время. Он состоит из нескольких пар медных проводов, покрытых пластиковой оболочкой. Провода, составляющие каждую пару, закручены вокруг друг друга, что обеспечивает защиту от взаимных наводок. Кабели данного типа делятся на два класса — "экранированная витая пара" ("Shielded twisted pair") и "неэкранированная витая пара" ("Unshielded twisted pair"). Отличие этих классов состоит в том, что экранированная витая пара является более защищенной от внешней электромагнитной интерференции, благодаря наличию дополнительного экрана из медной сетки и/или алюминиевой фольги, окружающего провода кабеля. Сети на основе "витой пары" в зависимости от категории кабеля обеспечивают передачу со скоростью от 10 Мбит/с – 1 Гбит/с. Длина сегмента кабеля не может превышать 100 м (до 100 Мбит/с) или 30 м (1 Гбит/с).

 

Устройство кабеля типа "витая пара"

Оптоволоконный кабель

Оптоволоконные кабели представляют собой наиболее современную кабельную технологию, обеспечивающую высокую скорость передачи данных на большие расстояния, устойчивую к интерференции и прослушиванию. Оптоволоконный кабель состоит из центрального стеклянного или пластикового проводника, окруженного слоем стеклянного или пластикового покрытия и внешней защитной оболочкой. Передача данных осуществляется с помощью лазерного или светодиодного передатчика, посылающего однонаправленные световые импульсы через центральный проводник. Сигнал на другом конце принимается фотодиодным приемником, осуществляющим преобразование световых импульсов в электрические сигналы, которые могут обрабатываться компьютером. Скорость передачи для оптоволоконных сетей находится в диапазоне от 100 Мбит/c до 2 Гбит/с. Ограничение по длине сегмента составляет 2 км.

Устройство оптоволоконного кабеля

Физическая и логическая топологии

Термин топология может употребляться для обозначения двух понятий – физической топологии и логической топологии.

 

Физическая топология – способ физического соединения компьютеров с помощью среды передачи, например, участками кабеля.

 

Логическая топология определяет маршруты передачи данных в сети. Во многих случаях, физическая топология однозначно определяет логическую топологию. Однако существуют такие конфигурации, в которых логическая топология отличается от физической. Например, сеть с физической топологией «звезда» может иметь логическую топологию «шина» – все зависит от того, каким образом устроен сетевой концентратор.

Физическая топология сети

Еще одним важным понятием физического уровня является способ соединения компьютеров с помощью физической среды или топология сети. Если сеть состоит всего из двух компьютеров, то они соединяются "напрямую". Такой способ соединения получил название "точка-точка" ("point-to-point").

 

Соединение типа "точка-точка"
Соединение типа "точка-точка"

 

Для обеспечения связи более чем двух компьютеров может использоваться последовательность соединений типа "точка-точка".

Последовательность соединений типа "точка-точка"

Последовательность соединений типа "точка-точка"

 

Однако такой подход требует установки на большую часть компьютеров нескольких устройств передачи данных.

В качестве альтернативного подхода возможно использование более сложных топологий, позволяющих подключить к общей среде сразу несколько компьютеров, имеющих по одному устройству передачи данных. Выделяют три базовые топологии: "Шина" ("bus"), "Кольцо" ("ring"), "Звезда"("star").

Топология «Шина»

Топология "Шина"

Топология "Шина"

 

Эта топология использует один передающий канал на базе коаксиального кабеля, называемый "шиной". Все сетевые компьютеры присоединяются напрямую к шине. На концах кабеля-шины устанавливаются специальные заглушки - "терминаторы" (terminator). Они необходимы для того, чтобы погасить сигнал после прохождения по шине. К недостаткам топологии "Шина" следует отнести следующее:

  • данные, предаваемые по кабелю, доступны всем подключенным компьютерам;
  • в случае повреждения "шины" вся сеть перестает функционировать.

 

 

Топология «Кольцо»

Топология "Кольцо"

Топология "Кольцо"

 

Для топологии кольцо характерно отсутствие конечных точек соединения; сеть замкнута, образуя неразрывное кольцо, по которому передаются данные. Эта топология подразумевает следующий механизм передачи: данные передаются последовательно от одного компьютера к другому, пока не достигнут компьютера-получателя. Недостатки топологии "кольцо" те же, то и у топологии "шина":

  • общедоступность данных;

  • неустойчивость к повреждениям кабельной системы.

 

Топология «Звезда»

Топология "Звезда"

Топология "Звезда"

 

В сети с топологией "звезда" все компьютеры соединены со специальным устройством, называемым сетевым концентратором или "хабом" (hub), который выполняет функции распределения данных. Прямые соединения двух компьютеров в сети отсутствуют. Благодаря этому, имеется возможность решения проблемы общедоступности данных, а также повышается устойчивость к повреждениям кабельной системы. Однако функциональность сети зависит от состояния сетевого концентратора.

Передача данных

Передача данных по физическим каналам подразумевает решение трех задач:

  • Кодирование/декодирование данных. Как известно, данные, обрабатываемые компьютером, представляются в двоичном виде - как последовательность нулей и единиц. Однако понятия "нуль" и "единица" являются логическими понятиями, обозначающими электрические сигналы, отличающиеся друг от друга физическими параметрами и использующиеся для представления информации в различных устройствах, например, оперативной памяти или центральном процессоре. В силу различных технических причин эти сигналы не всегда могут передаваться по физическим каналам связи. Поэтому они должны быть преобразованы. Процесс преобразования сигналов, "удобных для компьютера", в сигналы, которые могут быть переданы по сети, называется физическим кодированием, а обратное преобразование - декодированием.

В общем случае под кодированием понимается процесс отождествления элементов (или групп элементов) одного множества с элементами (или группами элементов) другого множества. Необходимость кодирования обуславливается потребностью "приспособить" сообщение для хранения и обработки каким-либо устройством или для передачи по каналам связи. Так, например, для отправки по телеграфным каналам информационное сообщение, состоящее из последовательности букв (элементов множества "Алфавит русского языка"), преобразуется с помощью телеграфного кода Морзе в определенную комбинацию электрических импульсов (элементов множества "Электрические импульсы различной длительности").

    Способ физического кодирования определяется техническими характеристиками среды передачи. Наиболее известным и часто используемым способом является модуляция. Суть модуляции состоит в том, что по физическому каналу передается непрерывный синусоидальный сигнал (называемый несущим или опорным), физические параметры которого изменяются в соответствии со значениями информационного сигнала, представляющего данные. Модуляция используется, как правило, при передаче данных по каналам, специально не предназначенным для построения компьютерных сетей (например, телефонным).


Фильм "Виды модуляции (1:49)

     

    Наряду с модуляцией для передачи данных могут использоваться различные виды цифрового кодирования, основанные на изменении уровня напряжения или полярности электрического сигнала. Поскольку сигналы, используемые для такого кодирования данных, достаточно легко искажаются под воздействием помех, то этот метод используется в каналах, специально предназначенных для построения именно компьютерных сетей и обладающих должными техническими характеристиками.


  • Передача сигналов. Информационные сигналы передаются по физическим линиям связи последовательно. В случае, если между передающей и принимающей сторонами параллельно существуют более одной линии, например, проложено несколько кабелей, то оказывается возможным одновременно (параллельно) передавать несколько сигналов. Если эти сигналы представляют различные биты передаваемых данных, то повышается скорость информационного обмена. Если же сигналы представляют один и тот же бит данных - то повышается надежность взаимодействия.


    Фильм "Последовательные и параллельные каналы (2:08)

  • Важной проблемой передачи данных является проблема затухания сигналов. Проходя определенное конечное расстояние, сигналы ослабевают до такой степени, что не могут быть правильно восприняты устройствами. В связи с этим для любой физической среды передачи существует ограничение на максимальное расстояние передачи данных. (см. разделы "Кабельные системы" и "Беспроводные технологии") В случае, если необходимо организовать передачу данных на расстояние, превышающее ограничение среды передачи, при построении канала связи применяются специальные промежуточные устройства, позволяющие усиливать и восстанавливать сигналы. Устройства такого рода, использующиеся при прокладке кабельных систем, называются повторителями (repeater).


    Фильм "Повторитель"

  • Синхронизация. Для успешного декодирования непрерывный поток сигналов, направляемый передатчиком по физическому каналу, должен быть разделен принимающей стороной на "фрагменты", соответствующие битам данных. Естественно, что такое деление не может быть произвольным, а должно быть синхронизировано с отправителем.


Фильм "Синхронные/асинхронные линии"

Устройства передачи данных

Для подключения компьютеров к среде передачи используются специализированные устройства. Основными функциями этих устройств является физическое кодирование и декодирование данных, а также синхронизация приема и передачи. Наряду с этим современные устройства могут решать задачи логической организации передачи, относящиеся к канальному уровню модели OSI. Наиболее известными в настоящее время устройствами являются модемы и сетевые адаптеры.

Модем (МОдулятор/ДЕМодулятор, Modem) представляет собой устройство, осуществляющее физическое кодирование данных методом модуляции. Существуют различные типы модемов для подключения к сетям по разным физическим каналам, как правило, не предназначенным для построения компьютерных сетей. Так, для подключения по телефонным линиям используются телефонные модемы (или - просто модемы, поскольку исторически под этим термином понималось устройство для подключения по телефонным линиям), для подключения по кабельным каналам - кабельные модемы, для подключения по радиоканалам - радиомодемы. Технические характеристики используемого канала накладывают ограничения на правила формирования сигналов (модуляции).

Обычно модемы используются для взаимодействия в сетях типа "точка-точка". В таких сетях не требуется сложной логической организации передачи, поскольку нет необходимости упорядочивать взаимодействие нескольких пар абонентов. К числу дополнительных функций, связанных с организацией передачи, можно отнести сжатие передаваемых данных и обнаружение и исправление ошибок с целью повышения эффективности и надежности передачи по низкокачественным каналам, например, телефонных (подробнее см. раздел "Канальный уровень").

Модем


Сетевой адаптер (сетевая плата, плата сетевого интерфейса, Network Interface Card) - это устройство, которое предназначено для подключения компьютера к высококачественным физическим каналам компьютерных сетей. Поэтому для физического кодирования передаваемых данных используются различные типы цифрового кодирования.

Поскольку компьютерные сети могут иметь сложные топологии? и в них одновременно могут осуществлять взаимодействие несколько пар абонентов, то требуется решать достаточно сложные задачи по упорядочиванию этого взаимодействия. Поэтому сетевые адаптеры реализуют также определенное число логических функций организации взаимодействия, например, адресации абонентов и упорядочивания одновременного доступа нескольких к общей физической линии и т.д. (подробнее см. раздел "Канальный уровень").


Сетевой адаптер

Резюме

  1. Основными функциями средств, относящихся к данному уровню, является:

    • побитовое преобразование цифровых данных в сигналы среды передачи;

    • передача сигналов по физической среде.

  2. Основными понятиями физического уровня являются: среда передачи сигналов, топология сети, устройства передачи данных;

  3. В качестве физической среды передачи сигналов используют кабельные системы, световые и электромагнитные волны.

  4. Наиболее распространенные кабельные системы: витая пара (медь), оптоволоконные (световые волны). 

  5. Способ соединения компьютеров определяется топологией сети.

  6. Простейшая топология - соединения всего двух компьютеров - называется "точка-точка".

  7. Сложне топологии являются комбинации трех базовых топологий: "шина", "звезда", "кольцо".

  8. Для подключения компьютеров к среде передачи используются специальные устройства передачи данных, наиболее распространенными из которых являются сетевые адаптеры и модемы.

  9. Одними из главных функций устройств передачи данных являются физическое кодирование и декодирование данных, а также синхронизация приема и передачи;

  10. Основными видами физического кодирования являются модуляция и цифровое кодирование.

  11. Модуляция обычно применяется при передаче данных по физическим каналам, специально не предназначенным для взаимодействия компьютеров.

  12. Цифровое кодирование используется в высококачественных каналах компьютерных сетей.

Дата последнего обновления страницы 31.08.2023
Сайт создан по технологии «Конструктор сайтов e-Publish»
Версия для слабовидящих
Размер шрифта Шрифт Межсимвольный интервал Межстрочный интервал Цветовая схема Изображения